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Conformations of linear DNA
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We examine the conformations of a model for underwound and overwound DNA. The molecule is repre-
sented as a cylindrically symmetric elastic string subjected to a stretching force and to constraints correspond-
ing to a specification of the link number. We derive a fundamental relation between the Euler angles that
describe the curve and the topological linking number. Analytical expressions for the spatial configurations of
the molecule in the infinite-length limit are obtained. A unique configuration minimizes the energy for a given
set of physical conditions. An elastic model incorporating thermal fluctuations provides excellent agreement
with experimental results on the plectonemic transition.@S1063-651X~97!01805-9#
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I. INTRODUCTION

Conformations of a slender elastic rod were origina
viewed as an interesting problem in classical elastic
theory. Kirchhoff@1# was the first to make significant hea
way towards a complete solution. Almost a century later,
polymers became the subject of intense study, interest in
problem picked up once again@2#. After the discovery of
biological polymers, e.g., nucleic acids and proteins,
searchers recognized the importance of predicting the ela
shape of linear molecules. The shape~‘‘tertiary structure’’!
of DNA and RNA plays an important role in the processes
replication and transcription. Because of this a number
authors have analyzed various aspects of elastic DNA c
formation @3,4# for both closed~circular! @5–7# and open
~linear! @8# configurations. The approaches taken include
grangian mechanics@5–8#, ~numerical! molecular dynamics
@9#, and statistical mechanics@10,11#. Despite significant
progress@8#, the equilibrium configurations of infinitely long
open DNA have not been analytically described. Our m
aims are to set up a formalism for obtaining equilibriu
configurations, to find one such conformation for stretch
twisted DNA, and to set up a model of plectonemic transit
to compare with experimental results@12#.

The elastic model of DNA represents the molecule a
slender cylindrical elastic rod. To model external forces a
torques the rod is stretched~in the z direction! by a force
F and is required to have a fixed linking number, Lk. T
rod is parametrized by arclengths. At each points we de-
scribe the rod by relating the local coordinate frameL to the
frameL0 rigidly embedded in the curve in its relaxed co
figuration. The relationship between the stressed and
stressed local frames is specified by Euler ang
u(s),f(s),c(s) needed to rotateL0 into L. The shape of the
backboner (s) is traced out by the unit tangentt(s). A unit
normal n(s) keeps track of the twistTw. In this paper we
will often omit thes depen-dence for brevity. We also mak
use of the notationẋ[(d/ds)(x). Then,

r ~s!5E
0

s

t~s8!ds8, ~1!
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t~s!5~sinusinf,sinucosf,cosu!, ~2!

n~s!5~cosfcosc2cosusinfsinc,2cosfsinc

2cosucosfsinc,sinusinc!. ~3!

Let the elastic constants of bending and torsional stiffness
denoted, respectively, byA andC, and letL be the length of
the rod. The energy of the twisted, stressed rod is the sum
bending and twisting energies and the potential energy p
duced by the stretching forceF. Using Eqs.~2! and ~3!,

Etot5Eel2E
0

L

dsFcosu5Ebend1Etwist2E
0

L

dsFcosu

5
A

2E0
L

ds~ ṫ!21
C

2E0
L

ds@~n3ṅ!•t#22E
0

L

dsFcosu.

~4!

Using Es.~2! and ~3! in Eq. ~4!, we obtain

Etot5E
0

L

dsFA2 ~ḟ2sin2u1 u̇2!1
C

2
~ḟcosu1ċ !22FcosuG .

~5!

The feature that sets this work apart from previous
tempts and allows us to unambiguously determine a uni
configuration for a given set of initial conditions is the co
straint of maintaining a fixed linking number Lk. Althoug
linking number is usually associated with closed curves,
bound ends of our string allow us to define a fractional lin
ing number for it. A caveat is that the local expressions
derive are only valid for the configuration~extended! we
consider. White’s theorem@13# allows us to express Lk in
terms of its components: Lk5Tw1Wr. Using Eqs.~2! and
~3!,

Tw[
1

2pE0
L

~n3ṅ!•tds52
1

2pE0
L

ḟcosu1ċds, ~6!
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Wr[
1

4pE0
L

dsE
0

L

ds8
~r2r 8!•~ t3t8!

ur2r 8u3
. ~7!

A local expression for twist Tw follows straightforwardly, a
evidenced by the far right-hand side of Eq.~6!. The writhe
Wr, however, is not yet suitable for use as a Lagrange m
tiplier. To express it as an integral of a local quantity we u
a theorem by Fuller@4#. The theorem allows us to define W
locally using a diffeomorphism onto areferencecurve Cr .
~Once again, we must stress that a different configurat
e.g. a circular plasmid, would require a different referen
curve, producing slightly modified local expressions.! The
writhe is expressed as

Wr5Wrr1
1

2pE0
L
tr3t•

d

ds
~ tr1t!

11tr•t
ds, ~8!

where Wrr is the writhe of the reference curve. Finding
suitable reference curve proves crucial. The best choic
also the simplest: a straight lineCr5(0,0,s). This gives
tr5(0,0,1) and Wrr50. Substituting~2! into Eq. ~8!, we
obtain

Wr5
1

2pE0
L

ḟ~cosu21!ds. ~9!

Combining Eqs.~6! and~9! we are led to the simple expres
sion for Lk:

Lk52
1

2pE0
L

~ḟ1ċ !ds. ~10!

Thus we have derived a simple conservation law that
presses the invariance of Lk. InsertingpdLk into the right-
hand side of Eq.~5!, with p a Lagrange multiplier, the ex
pression to be minimized becomes

H5E
0

L

dsFA2 ~ḟ2sin2u1 u̇2!1
C

2
~ḟcosu1ċ !22Fcosu

2p~ḟ1ċ !G . ~11!

DNA conformations of minimum energy are found amo
the extrema ofH.

We find the extrema ofH by applying standard varia
tional techniques to Eq.~11!. The resulting Euler-Lagrang
equations foru(s), f(s), andc(s) are

ḟ5
p~12cosu!

Asin2u
, ċ5

p

C
2
p~12cosu!cosu

Asin2u
, ~12!

A

2
u̇252

p2

A~11cosu!
2Fcosu1E0 . ~13!

A central goal is to find a unique conformation of the r
given a set of externally imposed constraintsF and Lk/L,
whereL is the length of the rod. We find that Eqs.~13! and
~12! support two types of solutions. The first is a family
twisted vertical lines
l-
e

n,
e

is

-

u50, f50, c~s!5~2p Lk/L !s. ~14!

The energy of the straight line follows directly from Eq.~5!:

Eline5
2CL

2
~p Lk/L !2 ~15!

The second family of solutions can be extracted from E
~13!. Multiplying Eq. ~13! by sin2u and integrating once, we
can rewrite Eq.~13! in the form (u[cosu)

ds5
du

A2
2p2

A2 ~12u!1
2

A
~E02Fu!~12u2!

[
du

A2F

A
~u2a!~u2b!~u2c!

~a<b<c!. ~16!

These ‘‘writhing’’ solutions are characterized by the roo
$a,b,c% of the cubic polynomial in the denominator of Eq
~16!. One of the roots, eithera or b, is 1. If u51 is a single
root, then the configurations form ‘‘superhelices.’’ Ifu51 is
a double root (a5b51) the molecule supports a solitonlik
excitation~see Fig. 1!. The quantityu5cosu takes on values
betweenc andb, the quadrature turning points. The expre
sions forf, c, and other quantities of interest follow b
quadratures. The integrals are easily evaluated in term
elliptic functions.

We have investigated the properties of solutions to E
~12! and~13!, with the bending and torsional stiffnessA and
C appropriate to DNA@14,6#. Using both numerical and ana
lytical methods we find that, given a particular Lk/T, the
member of the writhing family with the lowest energy is th
soliton configuration (a5b51). The shape of this solution
is defined by the following relationship between the a
clengths andu[cosu :

FIG. 1. Writhing family of solutions. The solution with the low
est energy is the soliton. In the infinite-length limit the soliton a
the twisted line have the same energy per unit length. The t
energy of the soliton exceeds the energy of the twisted line b
finite amount.
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s~u!5A 2F

A~12c!
lnS 11Au2c

12c

12Au2c

12c

D , ~17!

where the lower rootc is given by

c5
p2

2AF
21, ~18!

and f and c are similarly determined. A very interestin
quantity is the energy of the soliton and its relationship
that of the twisted line solution~which are both infinite in the
limit L→`):

Esoliton5Eline1DE

with

DE5
4F

L
A11cFA12c

11c
2arctanSA12c

11cD G>0.

~19!

It is clear from Eq.~19! that theEsoliton, while smaller than
the energies of the other members of the writhing family
alwaysgreater ~by a finite amount! than the energy of the
twisting line configuration satisfying the same conditions

II. PLECTONEMIC TRANSITION

Thus we find that an extended solution that minimiz
energy and has a specified Lk/L is alwaysa twisted straight
line. To check stability we perturb the straight-line soluti
u(s)501du(s). The perturbation calculation shows that t
nontrivial zero-energy mode satisfies

FA d2

dt2
2S F2

p2

4AD Gdu~s!50. ~20!

Thus, for Lk/L<AAF/pC the straight lineu50 is stable to
small fluctuations~agreeing with@15#!. What happens to the
molecule when the Lk/L approaches the critical value? O
results strongly indicate that the molecule attempts to lo
over and pass through itself to shed a unit of Lk/L and thus
starts to form a plectonemic bubble. In this sense the twis
rod is in a metastable state. The plectoneme plays the ro
the ‘‘bounce’’ @23,24# via which a system tunnels out of th
false vacuum. Beyond the transition to local instability t
plectonemes ought to proliferate. To explore this scenario
formulate a very simple model of the plectonemic transit
of stretched twisted DNA and compare its predictions w
recent beautiful experiments by Stricket al. @12#.

A. Plectonemic transition model

The model is diagramed in Fig. 2. In the following a
quantities are normalized by the lengthL, that is, Lk now
refers to link per unit length, and similarly for twist an
writhe. DNA researchers prefer to uses[DLktot /Lk0 to
measure topological properties of DNA. Here Lk0 is the
s

s

p

d
of

e

natural link of the unstressed DNA molecule; B-DNA h
one right-handed twist everyh53.4 nm. We will follow this
notation.

The molecule is constrained to have a total li
Lktot5s tot /h. The plectonemic fraction takes upX, leaving
12X straight. The plectoneme has a radiusR and a pitch
P. The straight portion is twisted to its critical valu
d Tw5AAF/pC[s l /h. The actual twist is slightly below
critical @16#, but numerical results indicate that the preci
value ~which depends weakly onL) is adequately approxi-
mated by that of an infinite string@17#. Guided by ‘‘twist
conservation’’ implied by Eqs.~12! we assign the same rat
of d Tw to the plectoneme. The remaining lin
Lktot2(Twpl1Lkl) is absorbed by the plectoneme’s Wrpl .
Let us give an account of the link distribution

Lk l5Twk5
s l

h
X,

Lkpl5Lktot2Lk l5
s tot2s l

h
1

s l

h
X5Wrpl1Twpl . ~21!

Because the plectoneme has the same rate of twist as the
we can read off its writhe from Eq.~21!. At the same time
the writhe of a plectoneme can be expressed as a functio
P andR @18,19#. This gives us a constraint

s tot2s l

h
5Wrpl5

XP

2p~R21P2!
. ~22!

Up to now we have not considered any thermal effects
corrections. Our aim is to build a formalism of obtainin
equilibrium zero-temperature solutions about which a th
modynamic theory can be obtained~e.g. by considering fluc-

FIG. 2. Extended and plectonemic phase coexist in the m
ecule. The plectonemic phase takes up a portionX.
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FIG. 3. Comparison of our predictions and the data of Stricket al. The families of curves ares50.102, 0.043, 0.031, 0.001, and
from top to bottom. The stretching of the untwisted (s50) line is purely entropic; thes50.102 transition is dominated by elastic energ
No attempts have been made to fit the data.
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tuations! @10#. However, because the experiments we are
amining contain a regime in which thermal effects play
significant role@12# we must consider them.

Marko and Siggia@18,10# have derived the free energy o
a plectoneme in their examination of fluctuations about h
cal structures. To within order unity, constants

Epl5
A

2 S R

~R21P2! D
2

1
C

2 S 2ps l

h D 21@~R/r 0!
212

1~pP/r 0!
212#/r 01A21/3@R22/31~pP!22/3#.

~23!

The first two terms in Eq.~23! are elastic contributions from
the curvature and twist, respectively. The next line is
hard-core interaction (r 0.1.75 nm@20#!. The last term is the
entropic penalty incurred for winding too tightly@10#. ~It is
interesting to note that although we include the last term
our model, its value isalways negligible.! Setting the plec-
tonemic fractionX we use Eqs.~22! and ~23! to minimize
Epl with respect toR andP.

Next let us determine the thermal behavior of the straig
line segment. Such behavior for theuntwistedrod has been
examined in some detail by Fixman and Kovak@21#. Equa-
tion ~20! allows us to make use of their results provided
replaceF with F8[F2p2/4A. Siggia and co-workers pro
vided a valuable summary of their results in an approxim
interpolation formula@22,10#. We employ the above subst
tution in the result of Siggia and co-workers to solve for t
thermal shortening of the straight portion of the molecule.
s.
-

i-

e

n

t-

e

n

the following,Z is the observed fractional extension@23,24#.
That is,Z is the ratio of theactual linear extension of the
straight-line segment to its backbone length

S F2
p2

4ADA
kbT

5@~12Z/X!2221!/41Z/X. ~24!

In the final analysis we compute the optimum plectonem
fraction X and the extensionZ for a given Lk andF. The
results are plotted in Fig. 3 side by side with experimen
results@12#. Because our model is a very simple one, and
have made no attempts to compute exact parameters~i.e.,
‘‘critical winding,’’ etc.! we cannot claim perfect agreemen
Nonetheless, the resemblance is striking. Our model sh
the shift from purely thermal behavior for very smalls to a
transition completely driven by elastic considerations
largers ’s and forces.

III. CONCLUSION

The primary limitation of the model investigated here
the absence of the restriction of excluded volume. Becaus
this, we are unable to characterize interwound configu
tions. However, calculations of the energetics of interwou
DNA provide the basis for semiquantitative models of t
plectonemic state. Work on this problem is ongoing.
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