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Conformations of linear DNA
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We examine the conformations of a model for underwound and overwound DNA. The molecule is repre-
sented as a cylindrically symmetric elastic string subjected to a stretching force and to constraints correspond-
ing to a specification of the link number. We derive a fundamental relation between the Euler angles that
describe the curve and the topological linking number. Analytical expressions for the spatial configurations of
the molecule in the infinite-length limit are obtained. A unique configuration minimizes the energy for a given
set of physical conditions. An elastic model incorporating thermal fluctuations provides excellent agreement
with experimental results on the plectonemic transit{@1063-651X97)01805-9

PACS numbegps): 87.15.By, 62.20.Dc

|. INTRODUCTION t(s)=(sindsing, sindcosp, cos), 2)
Conformations of a slender elastic rod were originally n(s) = (cospcosy— cossingsing, — cospsing
viewed as an interesting problem in classical elasticity
theory. Kirchhoff[1] was the first to make significant head- — cogcospsing, Sinfsing). 3

way towards a complete solution. Almost a century later, as

polymers became the subject of intense study, interest in thieet the elastic constants of bending and torsional stiffness be
problem picked up once agai2]. After the discovery of denoted, respectively, b andC, and letL be the length of
biological polymers, e.g., nucleic acids and proteins, rethe rod. The energy of the twisted, stressed rod is the sum of
searchers recognized the importance of predicting the elastiyending and twisting energies and the potential energy pro-

shape of linear molecules. The shaptertiary structure”)  duced by the stretching forde. Using Eqs.(2) and (3),
of DNA and RNA plays an important role in the processes of

replication and transcription. Because of this a number of L L
authors have analyzed various aspects of elastic DNA con- E;=Eq— J dsFcos9=Epengt Eqwist— f dsFcos
formation [3,4] for both closed(circularn [5-7] and open 0 0
(linean [8] configurations. The approaches taken include La- A (L C (L L
grangian mechanicdb—8], (numerical molecular dynamics = _f ds(t)2+_J ds[(nxh)-t]z—J dsFcos.
[9], and statistical mechanicisl0,11]. Despite significant 2J)o 2Jo 0
progresg 8], the equilibrium configurations of infinitely long
open DNA have not been analytically described. Our main
aims are to set up a formalism for obtaining equilibrium
configurations, to find one such conformation for stretchedLJ
twisted DNA, and to set up a model of plectonemic transition L TA c
to compare with experimental resufts2]. Etot:f ds[—(¢zsin20+ %) + = (pcosH+ )2 — Fcosd
The elastic model of DNA represents the molecule as a o |2 2
slender cylindrical elastic rod. To model external forces and (5)
torques the rod is stretchdth the z direction by a force
F and is required to have a fixed linking number, Lk. The The feature that sets this work apart from previous at-
rod is parametrized by arclength At each points we de- tempts and allows us to unambiguously determine a unique
scribe the rod by relating the local coordinate fratheo the ~ configuration for a given set of initial conditions is the con-
frame £, rigidly embedded in the curve in its relaxed con- straint of maintaining a fixed linking number Lk. Although
figuration. The relationship between the stressed and urinking number is usually associated with closed curves, the
stressed local frames is specified by Euler ang|e§)ound ends of our string allow us to define a fractional link-
6(s), ¢(s), ¥(s) needed to rotaté, into £. The shape of the ing_number for it. A_ caveat is that _the Io_cal expressions we
backboner (s) is traced out by the unit tanget(s). A unit ~ derive are only valid for the configuratiofextended we
normaln(s) keeps track of the twisfw. In this paper we ~consider. White's theorerfil3] allows us to express Lk in
will often omit thes depen-dence for brevity. We also make terms of its components: IKTw+Wr. Using Egs.(2) and

use of the notatiox=(d/ds)(x). Then, ),

(4)
sing Es.(2) and(3) in Eq. (4), we obtain

s 1 (L . 1 (L. .
r(s)zfot(s’)ds’, (1) Tw= ﬂfo(nxn)-tds=—ﬂfo $pco+ yds, (6)
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f dsf (r—r (t><t) @

A local expression for twist Tw follows straightforwardly, as
evidenced by the far right-hand side of E§). The writhe
Wr, however, is not yet suitable for use as a Lagrange mul-
tiplier. To express it as an integral of a local quantity we use
a theorem by Fullef4]. The theorem allows us to define Wr
locally using a diffeomorphism onto eeferencecurveC, .

(Once again, we must stress that a different configuration 1 u,
e.g. a circular plasmid, would require a different reference | >
curve, producing slightly modified local expressionghe \/

writhe is expressed as

. i FIG. 1. Writhing family of solutions. The solution with the low-

Xt ——(t,+1) : ; o I )

Wr=Wr. + L d 8 est energy is the soliton. In the infinite-length limit the soliton and
r=Wwr 27 )0 1+t,-t S, ®) the twisted line have the same energy per unit length. The total

energy of the soliton exceeds the energy of the twisted line by a

where Wy is the writhe of the reference curve. Finding a finite amount.
suitable reference curve proves crucial. The best choice is

also the simplest: a straight liné =(0,0,s). This gives 0=0, ¢=0, y(s)=(2mLk/L)s. (14
t,=(0,0,1) and Wy=0. Substituting(2) into Eq. (8), we
obtain

The energy of the straight line follows directly from E§):

1L,
Wr=—| ¢(co¥—1)ds. 9
27J0 E”ne:%(ﬂ' Lk/L)? (15

Combining Eqgs(6) and(9) we are led to the simple expres-

ion for Lk:
ston for The second family of solutions can be extracted from Eq.
I (13). Multiplying Eq. (13) by sirfé and integrating once, we
Lk=— Efo (¢p+)ds. (100 can rewrite Eq(13) in the form (U=cos)
Thus we have derived a simple conservation law that ex- du
presses the invariance of Lk. InsertipglLk into the right- ds=

hand side of Eq(5), with p a Lagrange multiplier, the ex-
pression to be minimized becomes

\/ 2p? 2 )
- F(l—u)Jr K(EO—FU)(l—u )

H= f s[ (¢23|n20+02)+—(¢cose+<//)2 Fcos = au (asb=c). (16

\/ZF o
& (u=a)(u=-bj(u=—c)

—p(p+9)|. (12)

These “writhing” solutions are characterized by the roots

DNA conformations of minimum energy are found among{a,b,c} of the cubic polynomial in the denominator of Eq.
the extrema ofH. (16). One of the roots, eithex or b, is 1. Ifu=1 is a single
We find the extrema of+{ by applying standard varia- root, then the configurations form “superhelices.”uif1 is

tional techniques to Eq.11). The resulting Euler-Lagrange a double root §=b=1) the molecule supports a solitonlike

equations ford(s), ¢(s), andy(s) are excitation(see Fig. L The quantityu= cosd takes on values
betweenc andb, the quadrature turning points. The expres-
_P(1-cosy) . p p(l-cos)cosy (12) sions for ¢, ¢, and other quantities of interest follow by
= ase 0 YTcC Asirtg quadratures. The integrals are easily evaluated in terms of

elliptic functions.
- p We have investigated the properties of solutions to Egs.
50°=- A(l+cosd) Fcogi+Eo. (13 (12) and(13), with the bending and torsional stiffneAsand
C appropriate to DNA14,6]. Using both numerical and ana-
A central goal is to find a unique conformation of the rod lytical methods we find that, given a particular Ok/the
given a set of externally imposed constraiftsand LK/, member of the writhing family with the lowest energy is the
wherel is the length of the rod. We find that Eq4.3) and  soliton configuration §=b=1). The shape of this solution
(12) support two types of solutions. The first is a family of is defined by the following relationship between the ar-
twisted vertical lines clengths andu=cos:
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14y
w [ 2F 1-c an F
S(U)= N y
A(1-c) u—c
1=Vi—e¢ g>
TWcritical
where the lower root is given by /
2
p
c= m -1, (18)
X
and ¢ and ¢ are similarly determined. A very interesting
guantity is the energy of the soliton and its relationship to
that of the twisted line solutiofwhich are both infinite in the
limit L—0): > \
Esoiiton= Eiine T AE
with = g
2nP
4F 1-c 1-c
AE—T\/l-i-C \/m—arctarE \/m }2 ’
19
It is clear from Eq.(19) that theEgg,n, While smaller than FIG. 2. Extended and plectonemic phase coexist in the mol-

the energies of the other members of the writhing family, isecule. The plectonemic phase takes up a porton
always greater (by a finite amounj than the energy of the
twisting line configuration satisfying the same conditions. natural link of the unstressed DNA molecule; B-DNA has
one right-handed twist evety=3.4 nm. We will follow this
Il. PLECTONEMIC TRANSITION notation. _ . .
The molecule is constrained to have a total link
Thus we find that an extended solution that minimizesLk;;= oot/h. The plectonemic fraction takes ufy leaving
energy and has a specified ILkis alwaysa twisted straight 1—X straight. The plectoneme has a radRsand a pitch
line. To check stability we perturb the straight-line solution P. The straight portion is twisted to its critical value
6(s)=0+ 86(s). The perturbation calculation shows that the d Tw= \/AF/wC=¢,/h. The actual twist is slightly below
nontrivial zero-energy mode satisfies critical [16], but numerical results indicate that the precise
value (which depends weakly oh) is adequately approxi-
d? p mated by that of an infinite strinfll7]. Guided by “twist
AW_ F- a4A conservation” implied by Eqs(12) we assign the same rate
of dTw to the plectoneme. The remaining link
Thus, for Lk < JAF/«C the straight lineg=0 is stable to  Lki— (TWpi+Lk)) is absorbed by the plectoneme’s yur
small fluctuationgagreeing with15]). What happens to the Let us give an account of the link distribution
molecule when the LK/ approaches the critical value? Our

56(s)=0. (20)

results strongly indicate that the molecule attempts to loop Lk|=TWk=ﬂX,
over and pass through itself to shed a unit oflLidnd thus h
starts to form a plectonemic bubble. In this sense the twisted
ici Tiot— O g
rod is in a metastable state. The plectoneme plays the role of Lk = Lkior— Lk = toth Ly FIX=WFp|+TWp|- 21)

the “bounce”[23,24 via which a system tunnels out of the

false vacuum. Beyond the transition to local instability the
plectonemes ought to proliferate. To explore this scenario w&ecause the plectoneme has the same rate of twist as the line,
formulate a very simple model of the plectonemic transitionwe can read off its writhe from Eq21). At the same time

of stretched twisted DNA and compare its predictions withthe writhe of a plectoneme can be expressed as a function of

recent beautiful experiments by Striek al. [12]. P andR [18,19. This gives us a constraint
- XP
A. Plectonemic transition model Utmh 7 =er|:m. (22

The model is diagramed in Fig. 2. In the following all
guantities are normalized by the lendth that is, Lk now Up to now we have not considered any thermal effects or
refers to link per unit length, and similarly for twist and corrections. Our aim is to build a formalism of obtaining
writhe. DNA researchers prefer to use=ALk/Lky to  equilibrium zero-temperature solutions about which a ther-
measure topological properties of DNA. HeregLlks the  modynamic theory can be obtainéglg. by considering fluc-
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Strick et al.
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FIG. 3. Comparison of our predictions and the data of Stethkl. The families of curves are=0.102, 0.043, 0.031, 0.001, and O
from top to bottom. The stretching of the untwistag=f0) line is purely entropic; the-=0.102 transition is dominated by elastic energy.
No attempts have been made to fit the data.

tuations [10]. However, because the experiments we are exthe following,Z is the observed fractional extensif28,24.
amining contain a regime in which thermal effects play aThat is,Z is the ratio of theactual linear extension of the

significant role[12] we must consider them. straight-line segment to its backbone length
Marko and Siggid18,1Q have derived the free energy of 2
a plectoneme in their examination of fluctuations about heli- ( F— p_)A
cal structures. To within order unity, constants — —[(1-2Z/X)"2—1)/4+ ZIX. (24)
A R 2 Cc(2mo)\? 1o ;
Ep|=§ (R2+—Pz) +§ ho +[(R/ry) In the final analysis we compute the optimum plectonemic
fraction X and the extensioZ for a given Lk andF. The
+(7PIrg) " ¥lrg+ A YI R34 (7P) 23, results are plotted in Fig. 3 side by side with experimental

results[12]. Because our model is a very simple one, and we
(23 have made no attempts to compute exact paraméters
“critical winding,” etc.) we cannot claim perfect agreement.
Nonetheless, the resemblance is striking. Our model shows
She shift from purely thermal behavior for very smallto a

The first two terms in Eq(23) are elastic contributions from
the curvature and twist, respectively. The next line is th
hard—cpre |nterac_t|onr():1.75 nm[gO]).The_Iast term is _the transition completely driven by elastic considerations for
entropic penalty incurred for winding too tightL0]. (It is larger o's and forces.

interesting to note that although we include the last term in

our model, its value islways negligible Setting the plec- I1l. CONCLUSION
tonemic fractionX we use Egs(22) and (23) to minimize ) o ) ] )
E,, with respect toR and P. The primary limitation of the model investigated here is

tthe absence of the restriction of excluded volume. Because of
this, we are unable to characterize interwound configura-
tions. However, calculations of the energetics of interwound
DNA provide the basis for semiquantitative models of the
plectonemic state. Work on this problem is ongoing.

Next let us determine the thermal behavior of the straigh
line segment. Such behavior for thatwistedrod has been
examined in some detail by Fixman and KoJ@d]. Equa-
tion (20) allows us to make use of their results provided we
replaceF with F'=F —p?/4A. Siggia and co-workers pro-
vided a valuable summary of their results in an approximate
interpolation formulg22,10. We employ the above substi-
tution in the result of Siggia and co-workers to solve for the The authors would like to acknowledge helpful discus-
thermal shortening of the straight portion of the molecule. Insions with Professor J. White and with Z. Nussinov.
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